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ABSTRACT 
 
 
 Traditionally, digital imaging systems rely on the use of dedicated 

photodetectors to capture specific wavelengths in the visible spectrum.  These 

photodetectors, which are commonly made of silicon, are arranged as arrays to 

capture the red, green and blue wavelengths.  The signal captured by the individual 

photodetectors must then be interpolated and integrated to obtain the closest color 

match and the finest possible resolution with reference to the actual object.  The use 

of spatially separated detectors to sense primary colors reduces the resolution by a 

factor of three compared to black and white imaging.  The FOVEON detector 

technology greatly improves the color and resolution of the image through its 

vertically arranged, triple well photodetector.  This is achieved by exploiting the 

variation of absorption coefficient of silicon with wavelength in the visible spectrum.    

Hence, in a silicon detector, the shorter wavelength (e.g. blue) would be mainly 

absorbed at a shallow depth.  A longer wavelength (e.g. red) would penetrate the 

material deeper than the shorter wavelengths and be primarily absorbed at a greater 

depth.  By producing a layered silicon detector, all three primary colour wavelengths 

of red, green and blue can be captured simultaneously.  This thesis aims to study 

the FOVEON camera’s ability to image light from the near Infrared (NIR) to the Ultra-

Violet (UV) range of the electromagnetic spectrum.  The imaged obtained using a 

set of bandpass filters show that the camera has response both in the UV as well as 

NIR regions. 
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I. INTRODUCTION 
 

Imaging systems capable of discriminating spectral bands from the ultra-violet 

(UV) to the IR are increasingly important in the military.  A comparison of the 

reflectance in the red and near infrared (NIR) wavelengths allows vegetation health 

to be determined.  This principle also allows camouflage to be distinguished from 

surrounding vegetation by the judicious consideration of the spectral reflectance at 

various wavelengths.  Other uses are also emerging with the maturity of spectral 

technology.  Presently, there is an important need for imaging systems to have good 

spectral fidelity but yet be inexpensive.  Current standard imaging systems (color 

focal planes) are poorly suited for such applications.  A triple-well photodetector 

focal plane array, marketed as the FOVEON image sensor, was introduced into 

commercial availability in 2000.  Compared to conventional photodetector arrays that 

only detect a relatively broad band of wavelengths, the FOVEON image sensor is 

able to discriminate three different visible wavelengths of light (blue, green and red) 

on each individual pixel.  The purpose of this thesis was to study the ability of the 

triple-well FOVEON camera to image light from the NIR to the UV wavelengths from 

200 nm to 1100 nm.  This was achieved by measuring the signal outputs at each of 

the three detectors (red, green and blue) in the FOVEON camera for the range of 

wavelengths mentioned above.     

 

A. TECHNICAL BACKGROUND 
The semiconductor photodetectors have become a critical component in 

many modern sensing and imaging devices, such as compact disc players, digital 

cameras and video cameras.  Photodetectors may be broadly separated into 

photoconductors and photodiodes.  Photoconductors work on the principle of 

exciting electrons from the valence band to the conduction band when photon 

energy is greater than the bandgap of the material.  Under an external bias, these 

electrons produce a current in the material which is converted into a voltage signal 

by measurement devices or into a binary code by microchips within the image 

sensor.  The binary codes represent image information such as color and brightness.  
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Photodiodes consist of a p-n junction where the built-in electric field can generate 

either a photocurrent or a voltage depending on the mode pf operation as illustrated 

in Figure 1.  A reverse bias is usually applied to the photodiode to increase the 

depletion layer width that results in a higher responsivity.  The disadvantage of these 

single-layered conventional photodetectors is that a specific band of wavelengths 

may be detected without the spectral information, depending on the bandgap of the 

semiconductor, Eg.  Therefore, in the area of color imaging, different detectors are 

required to capture the three primary colors of the visible spectrum.  This is achieved 

by placing micro-filters in front of the photodetectors to ensure selective wavelengths 

are captured.  These detectors are often arranged in the form of a Bayer array 

pattern  [1].  Each detector acts as an image pixel and represents the intensity of one 

of the primary colors that make up the input image.  In order to accurately reproduce 

the actual image, various signal processing techniques are required to integrate as 

well as interpolate the pixilated signals.  The techniques aim to reproduce the correct 

color match and image brightness, as well as to provide as high a resolution as 

possible.  One of the disadvantages of this approach is the loss of spatial resolution 

since three spatially separated detectors needed for capturing the color information.  

Many different materials may be used to produce photodetectors, including Silicon 

(Si), Gallium Arsenide (GaAs) and Indium Antimonite (InSb); however, Si is primarily 

used for visible light detection due the possibility of monolithic integration of signal 

processing electronics.   [2] 

 

 

Figure 1. Band Diagram of a PN Junction Photodetector adapted from  [2]. 
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To circumvent the drawbacks posed by single-layered detectors, FOVEON 

developed a triple-well photodetector which can sense the three primary colors in 

the same pixel.  This is achieved by making use of the intrinsic characteristic of 

silicon to absorb different wavelengths of light according to its thickness.  The 

absorption depth of Si with wavelength is shown in Figure 2.  Shorter wavelengths 

(blue) would be absorbed by a thin layer of silicon near the surface whilst longer 

wavelengths (green and red) would pass through the surface layer of silicon and be 

absorbed only in the underlying layers.  Stacking three p-n photodetectors at 

different depths, as shown in Figure 3, allow the collection of signals from different 

wavelengths in the same pixel.  Each layer of silicon is doped with different levels of 

n and p type dopants to form the p-n junctions.  With the application of a small 

reverse bias voltage, each layer acts as one end of a PN junction to the next.  This 

produces higher sensitivity and allows easy signal readout.  According to the US 

patent report for the FOVEON image sensor  [3], this idea was not totally novel since 

there have been previous attempts to use layered or stacked photodetectors to 

perform this function.  These designs were, however, extremely expensive as a 

commercial product and complicated to manufacture and assemble.  It was largely 

due to the recent advances in Complimentary Metal-Oxide Semiconductor (CMOS) 

fabrication techniques that the FOVEON detector technology could be produced with 

commercial viability.   

 

 

Figure 2. Absorption Depth of Silicon with Wavelength.  The photodetectors used in 
FOVEON camera are located at the three depths of 0.2 µm, 0.8 µm and 3 µm  [4]. 
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Figure 3. Schematic showing the three p-n junctions in a FOVEON pixel  [3]. 
 

According to FOVEON Inc. press releases, its patented photodetector is able 

to achieve color resolutions three times higher than conventional photodetectors 

arranged in the Bayer pattern  [4].  Since every pixel of the image is detected by a 

single photodetector, the FOVEON detector is able to capture three wavelengths 

coming from the image, rather than a single wavelength, producing brighter images 

and better color representation of the image scene.  Conventional photodetector 

technology would not only lose image brightness but require complex image post-

processing techniques such as interpolation to obtain a close color match.  

According to reviews and articles published on the World Wide Web, the quality of 

digital images captured by the FOVEON photodetector may even be comparable to 

the photo-emulsion films used in traditional color photography  [5].  The CMOS 

design of the image sensor also allows processing to be performed at the pixel, 

reducing the size required of the image sensor.  It also allows pixels to be grouped 

together in high frame rate, low resolution applications  [6].  At the time of writing, the 

FOVEON detector technology has been employed in a number of commercial digital 
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cameras with positive feedback.  Judging from the lack of published literature except 

one  [7], it is assumed that not many attempts have been made to expand the 

detection spectrum of the FOVEON detector to include both the near-UV and near-

IR ends of the visible spectrum.   

 

 

Figure 4. Comparison of FOVEON Detector Technology (above) with Conventional 
Silicon Photodetector Arrays arranged in the Bayer pattern (below)  [1]. 

 

There are many potential applications for the FOVEON image sensor.  The 

military employs numerous imaging systems in the various services for observation, 

surveillance, targeting, navigation and tracking purposes.  The accuracy and validity 

of the analyses derived from these systems are crucial to the success of military 

operations and the reduction of mistakes and unnecessary loss of life.  Hence, by 

employing the FOVEON detector technology in its image analysis and surveillance 
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activities, the military stands to benefit from its higher resolution and more accurate 

imaging capabilities.  A high level of detail in images allows for better intelligence 

collection and precision strike planning.  The technology employed for intruder 

detection and other target acquisition systems that rely on high image detail may 

also be further improved with the FOVEON photodetector.  Further benefit may be 

derived by the extended detection spectrum to include UV and near IR wavelengths.  

Applications that will stand to gain from this research include night vision sighting 

equipment and target tracking systems, both applications employing the advantages 

of operating in the near IR wavelengths.  Near-UV imaging applications include anti-

camouflage applications as well as applications to reduce image blooming caused 

by high intensity background lighting.   

 

B. STRUCTURE OF THESIS 
This report documents the background theory and experimental procedures 

employed to achieve the goal of the thesis.  It is divided into five chapters.  The first 

chapter introduces the theoretical background behind photodetectors and outlines 

the structure of the research.  The second chapter explains the characterization 

procedures of the FOVEON detector in detail.  The third chapter discusses the 

images captured in the near-IR and near-UV wavelengths as well as the theory 

behind the perception of color and color image processing.  The fourth chapter 

discusses the findings from the thesis and various proposals for further study.  The 

final chapter concludes.  The various appendices present detailed findings of this 

thesis as well as detailed equipment specifications used in the course of thesis 

research. 

 

In the course of this report, the term “FOVEON detector” or “FOVEON image 

sensor” will be used to mean the entire FOVEON detector array installed in the 

HanVision camera, unless otherwise stated.   The term “camera” or “HanVision 

camera” will be used to mean the HanVision HVDUO-5M camera purchased for the 

thesis research.  The term “monochromator” refers to the photodetector 

characterization system set up in the Naval Postgraduate School Sensor Research 
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Lab (SRL).  The term “invisible” is a generic reference to the near-UV and near-IR 

wavelength regions that are the focus of study in this thesis.   

 

C. SYSTEM OVERVIEW 
1. General 
For the purpose of this thesis, the HanVision HVDUO-5M camera, fitted with 

a FOVEON X3 image sensor, was used.  It has 8-bit digital output for each of the 

colors and is capable of recording images in the range of wavelengths of interest.  It 

is packaged with a number of software applications to control the various modes and 

functions of the camera, as well as to perform image analysis.  Additional 

information on the camera may be obtained from the HanVision company website  [8].  

The thesis research involved the characterization of the FOVEON detector array in 

the camera and subsequently, capturing images in the near-UV and near-IR 

wavelengths.  In the characterization phase, the responsivity of the FOVEON 

detector array as a function of wavelength was measured using a monochromator 

and a calibrated photodiode.  Next, images were captured using the camera and 

suitable optical filters before undertaking further post-processing development.  The 

equipment and software products required for this purpose are summarized in Table 

1. 
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S/No. Equipment Remarks 

1. Oriel Monochromator System. The photodetector characterization system set-

up in the NPS SRL by LCDR Herdlick, USN  [9]. 

2. HanVision HVDUO-5M Imaging 

Camera. 

Research grade imaging camera with FOVEON 

detector technology. 

3. Matrox Meteor II/ Camera Link 

Framegrabber card. 

Image capture device to interface HanVision 

Camera with analysis PC. 

4. Calibrated UDT Sensors UV-035D 

Planar Diffused UV Enhanced 

Photodiode (S/No. 7309)  0. 

Calibration of the monochromator and FOVEON 

camera. 

5. Matrox MIL-Lite 7.5  Image capture software for the HanVision 

Camera and driver utility for the Framegrabber 

card. 

6. National Instruments Labview 6.0. Driving software for the monochromator. 

7. NEGUS HanVision Image Analysis Software. 

8. HCCT HanVision Image Capture Software. 

Table 1. List of Equipment used in the camera characterization and imaging. 
 

Further discussion on the experimental set-up is presented in Chapter II of 

this report while additional technical information and specifications of the research 

equipment may be found in the Appendices.  

 

2. Characterization of the FOVEON Image Sensor  
Characterization of the FOVEON detector array was done in a number of 

steps.  First, the intensity output of the monochromator at various wavelengths was 

calibrated.  This was achieved by using a calibrated UV enhanced photodiode (see 

Appendix I for calibration data), across a spectrum of light from 200 nm to 1200 nm 

in wavelength.   
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If the responsivity of the calibrated detector is Rref(λ) and power incident on 

the detector is Pref(λ) then the measured current signal Sref(λ) can be calculated as 

follows : 

 
)()()( λλλ refrefref PRS ×=  -------------------- (1) 

Thus, the power incident on the photodetector is given by 

)(
)(

)(
λ
λ

λ
ref

ref
ref R

S
P =

  -------------------- (2) 

 

The intensity of the light incident on the photodiode can be calculated using 

the calibrated detector area (I(λ)) as: 

 

)(
)(

)(
λ
λ

λ
ref

ref

A
P

I =  

 
)()(

)(
λλ

λ

refref

ref

RA
S
×

=  -------------------- (3) 

 

Next, the HanVision Camera was coupled to a computer using the Matrox 

Meteor II/Camera Link Framegrabber and the signal output from the different 

detector layers of the FOVEON camera was recorded.  The signal response of the 

FOVEON detector was retrieved and analysed using the two software applications 

provided by HanVision.  The HCCT software, provided by the camera manufacturer, 

was used for sending image capture commands to the camera, as well as applying 

the various exposure and color compensation settings.  Images captured were 

transferred to the NEGUS software to extract the red, green and blue signal 

responses from the image sensor.  The raw voltage measurements from the 

individual pixel photodetectors were converted into a digital binary code by the 

image processing electronics within the camera.  These 8-bit digital data, 

represented the 0 to 255 monochrome values for each color.  These values were 

then normalized to obtain the responsivity curves of the image sensor.  The process 

of measurement was similar to the calibration of the monochromator power using the 
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calibrated photodetector.  Multiple measurements were performed to study the 

effects of the camera’s exposure time and other settings on the responsivity 

measurements.   

 

The responsivities of the three detectors at each pixel Rdet(λ) can be obtained 

the measured signal (Sdet(λ)) and area of the detector (Adet(λ)) as follows : 
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In the course of the research, it was found that there were certain limitations 

in the dynamic range of the camera especially when the signal strength is weak for 

UV and NIR wavelengths.  Hence, different camera settings and focusing optics 

were used to enhance the signal strength.  Care was taken to ensure that these 

parameters, such as lamp current and focusing of the light source for the photodiode 

and camera measurements were compatible for different experiment scenarios.  

These limitations will be discussed in detail in the following chapters of this report.   

 

3. Near-UV and Near-IR Imaging with the FOVEON Camera   

Although, the FOVEON image sensor is designed primarily to capture visible 

light (450 – 700 nm), it is also able to detect near-UV and near-IR wavelengths as 

well.  According to studies performed by Gilblom and Yoo  [7], the FOVEON detector 

captures near-UV photons in the top layer of the photodetector, in the region 

designed to capture blue light.  It also states that near-IR wavelengths would pass 

through all three layers, due to its longer wavelength, and produced detection 

signals primarily in the bottom layer.  This particular characteristic of the image 
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sensor was essential in the image capture of near-UV and near-IR wavelengths.  

Image capture and analysis are further elaborated in Chapter III of this report.  
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II. CHARACTERIZATION OF THE FOVEON DETECTOR 
ARRAY 

 
A. GENERAL 

Responsivity describes the current or voltage produced by the photodiode 

when light of a given power impinges on it.  Responsivity varies for different 

wavelengths and normally peaks around the bandgap energy of a photodiode  [2].  

The first step in the thesis was to determine the responsivity of the FOVEON 

detector array as a function of wavelength.  The responsivities of the three 

photodiodes associated with each pixel showed the sensitivity of the detector to 

various wavelengths of light.  This was achieved by first calibrating the 

monochromator using a factory calibrated UV enhanced photodiode.  The signal 

responses of the three photodetectors were measured next.  From Equation 5, their 

responsivities for various wavelengths were calculated.  Due to the low power output 

of the monochromator at near-UV and violet wavelengths, the blue gain of the 

camera was increased, whilst suppressing the red and green response of the 

detector. This provided higher signal output at those wavelengths.  This chapter 

presents the experimental set-up and measurement procedures adopted.    

 

B. EQUIPMENT AND SOFTWARE SET-UP 
1. Hardware Set-Up   

The hardware set-up for the spectral measurement was straightforward and 

primarily involved the Oriel Monochromator system assembled by LCDR Herdlick  [9], 

as well as the installation of the Matrox Meteor II Framegrabber card to control the 

HanVision camera.  Without any major adjustments to the layout of the system, the 

photodiode and the camera were mounted in the same location on the optical table 

for the monochromator light intensity measurements and the camera 

characterization, respectively.  This is shown in Figure 5 and Figure 6.  While slight 

adjustments were made to focus the light onto the detector arrays, their position 

remained relatively close and may be assumed to be the same.  The technical and 

operating details of the Oriel monochromator have been well documented in 



 14

Herdlick’s thesis  [9] and will not be covered in this report.  The photodiode selected 

to calibrate the light intensity output of the monochromator was the UDT UV 

enhanced UV-035D Photodiode (see Figure 8), chosen due to its sensitivity in the 

UV range.  It was factory calibrated from 200 nm to 1100 nm wavelength range (See 

Appendix I for more information).  The calibrated photodiode was connected to one 

of the lock-in amplifiers which read the photocurrent generated by the photodiode.  

From the measurements, it was found that the monochromator output had extremely 

low intensities in the near-UV and violet-blue region (from 200 nm to 400 nm) of the 

spectrum.  It was necessary to focus the light from the monochromator to increase 

the intensity of light incident on the calibrated photodiode and the camera.  Note that 

the focused light is incident only the middle section of the FOVEON array. 

 

 

Figure 5. Block Diagram of Hardware Set-up 
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Figure 6. The Oriel Monochromator System used in the Measurement. 
 

There was an initial attempt to apply a reverse bias voltage to the calibrated 

photodetector but it was found that the output signal was beyond the lock-in amplifier 

range.  The photodiode was still able to detect the light input extremely well without 

the bias.  This was verified by comparing the resulting responsivity curve with 

information contained in its product brochure  [10].  As such, the calibration 

proceeded without any external bias in the photodiode.  Due to the high sensitivity of 

the photodiode and the maximum detection limits of the lock-in amplifier, the output 

slit width of the monochromator was adjusted to 0.5 mm.  The current in the 

monochromator light source was set to either 7 A out of maximum 8.33 A.  The 

lower current setting was used primarily for the measurements beyond 400 nm in 

order to prevent saturation of the signal on the camera or the photodiode.  The 

higher lamp current setting provided more power when measuring the shorter 

wavelengths (less than 400 nm) of light.  Due to the limitations in the measurement 
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equipment, care was taken to prevent signal overloading yet attempting to maintain 

sufficient signal strength for the measurement.  As such, the calibration of the 

monochromator light intensity was done with multiple settings in order to select the 

optimal result set for analysis.  Another measure adopted to prevent overloading 

was the focusing of the monochromatic light on the detectors.  Measurements were 

taken with the tightly focused light on the detector as well as spread over the 

detector area as illustrated in Figure 7.  Optical filters were used to filter the 

monochromator light source in order to minimize the second order effects from the 

gratings.  In addition, the effects of the room lighting were also studied by performing 

the calibration both with the room lighting on and another time with it switched off.  In 

both cases, the results show negligible differences.  Data with the same experiment 

parameters were used in the calculation of the responsivity values.  A summary of 

the experiment parameters for the calibration of the monochromator light intensity 

using the photodiode is shown in Table 2. 

 

 

Figure 7. Schematic diagram of monochromatic light beam focused on the detector (left) 
and spread over detector (right). 
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Parameter Value Parameter Value 

Optical Chopper Frequency 152 Hz Photodiode Bias Voltage Nil 

Photodiode Peak Wavelength 970 nm Photodiode Detector Array Area 5.8 x 5.8 

mm2 

Monochromator Illuminator Current 

Output 

7 A Monochromator Output Slit Width 0.5 mm 

Minimum Monochromator Output 

Wavelength 

200 nm Maximum Monochromator Output 

Wavelength 

1100 nm 

Monochromator Output Wavelength 

Interval 

10 nm Time Interval between signal 

recording  

5 s 

Measurement Range 1 (no filter 

used) 

200 to 

500 nm 

Scale on Lock-in Amplifier (Current 

setting 106 V/A) 

30 mV 

(light 

spread), 

300 mV 

(light 

focused) 

Measurement Range 2 (420 nm filter 

used, light spread over detector and 

light focused) 

400 to 

700 nm 

Scale on Lock-in Amplifier (Current 

setting 106 V/A) 

3 V 

Measurement Range 3 (620 nm filter 

used, light spread over detector and 

light focused) 

600 to 

1200 nm 

Scale on Lock-in Amplifier (Current 

setting 106 V/A) 

3 V 

Table 2. Experimental Settings used for Calibrating Monochromator Light Output.  
 

 

Figure 8. The UDT UV-350D Photodiode mounted on the optical bench. 
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The responsivity of the FOVEON camera was measured next.  Although the 

HVDUO-5M camera only had 1.51 million individual photodetector elements, it had a 

total color resolution of 4.53 megapixels due to its triple layered structure.  It has a 

24-bit digital output (8-bits for each color) and is able to capture both still and video 

images.  The camera had flexible exposure settings and other image control 

features that were useful for the purpose of the research.  For image capturing, the 

camera was connected to a PC.  The lens of the camera is transparent to near UV 

wavelengths. 

 

  

Figure 9. The HanVision HVDUO-5M Camera (left)  [8] and the internal FOVEON X3 Image 
Sensor (right)  [4]. 

 

No major changes were made to the hardware set-up from the first stage 

except that the camera was placed in the position of the photodiode and connected 

to the PC by means of a RS-422 cable via the framegrabber.  The same routines 

were conducted with the monochromator scanning wavelengths from 200 nm to 

1100 nm.  The digital signal readouts were recorded from the line profile tool in the 

NEGUS application.  Since the optical chopper was not employed, the calibration of 

the camera was performed in a darkened environment to minimize the signal due to 

room lighting.  Although similar procedures were followed, the camera 

measurements were performed in multiple stages to adjust for the effects of 

exposure time and other camera settings during the responsivity measurement.   

Measurements were also taken with the built-in camera filter (400 to 660 nm) on and 
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subsequently removing it.  The Table 3 summarizes the experimental settings for 

measuring the camera responsivity.  Further details about the camera software 

settings are discussed in the following section.   

 
Camera Experiment Setting S/No. 

Lamp 
Current 

(A) 

Wavelength 
Range (nm) 

Monochromator 
Filter (nm) 

Gray Mean 
Value 

Exposure 
Timing 

(ms) 

Focusing of 
Monochromatic 

Light 

1. 8.33 200-500 None None 12.5 Focused Slit 

2. 8.33 200-500 None -10, -10, 20 25 Focused Slit 

3. 8.33 200-500 None -10, -10, 20 12.5 Focused Slit 

4. 7.0 400-700 420 None 12.5 Spread over 

detector 

5. 7.0 600-1200 620 None 12.5 Spread 

Table 3. Experiment parameters for measuring the HVDUO-5M responsivity.   
 

2. Software Set-Up   

There were two main programs that were used to run the experiment.  The 

first was the existing LabView program compiled by Herdlick  [9] to operate the entire 

monochromator system.  It primarily controlled the monochromator and recorded of 

the voltage readouts from the lock-in amplifiers.   
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Figure 10. Block Diagram of Software Linkages and some Key Functions.  
 

 

Figure 11. Screenshot of LabView Monochromator Control Program.  
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adjust the color compensation, exposure time, shutter and other settings for the 

HVDUO-5M camera  [11].  Built into the camera was an image processing chip that 

translated signals generated by the three photodetector layers into sRGB color data 

for subsequent display.  Depending on the color compensation settings, this 

translation may produce images with varying hue adjustments.  Therefore, in order 

to obtain the most accurate color captured by the camera, it was necessary to 

disable the camera’s color adjustment function by setting the color settings to “unit”.  

To improve the signal measured in the shorter wavelengths (200 nm to 400 nm), the 

exposure time for the camera was increased and the Gray Mean Value was adjusted.  

The Gray Mean Value setting allows for the manual compensation of the individual 

red, green and blue signal outputs from the camera.  This function was used to 

improve the detector response in the blue layer when capturing near-UV and violet 

light.  In order for the image sensor to capture equal amounts of light at every pixel 

line, the shutter setting was set to rolling shutter.   

 

 

Figure 12. Screenshots of the HCCT software showing the interfaces for adjusting various 
image capture settings for the HVDUO-5M camera.  
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As shown in Figure 12, the HCCT software was used for controlling the 

camera settings.  The HCCT software must be operated with the NEGUS software 

to receive and display the captured image.  The NEGUS software has a number of 

simple interfaces with which to perform image analysis.  The two main functions that 

were commonly used were the line profile and pixel histogram functions.  As shown 

in Figure 13, the line profile function displayed the red, green and blue signal levels 

of the captured image, at a selected pixel line.  Each color was represented by an 8-

bit binary code to represent the 256 monochrome shades of that color.  A 

combination of these three colors provided the 24-bit digital output and represented 

the color in an individual pixel.  The line profile gave a quick indication of the color 

combination in the image as well as to whether there were too much dark colors or 

over-saturation in the image due to the camera’s color compensation settings.  

Different experimental settings, such as increased lamp power and Gray Mean 

Value adjustments were made for images with extremely low signal output 

(especially in the shorter wavelength range mentioned).  Selected regions in the 

image that were not oversaturated were used to obtain a balanced result.  The pixel 

histogram tabulated the number of pixels for each shade of the three colors in the 

image.  The mean value of the image for the individual color was also calculated.  As 

shown in Figure 14, the 650 nm monochrome light is shown to consist of a 

combination of red, green and blue levels.  Within each primary color is a distribution 

of the monochrome shades as well as the mean.  When set to the “unit” color 

coefficient setting (on the HCCT program), this mean level was taken to be the 

nominal signal response for that primary color. 
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Figure 13. Screenshot of the NEGUS software showing the line profile function.   
 

Line of 
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Line profile of the 
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Figure 14. Image of a monochrome light at 650 nm wavelength showing the contribution 

from the red, green and blue signals. 
 

3. Results   

From the approach described in the previous chapter, the intensity of the 

monochromator was found to be as shown in Figure 15.  The curves from different 

wavelength regions generally show continuity and overlap.  As mentioned, the 

calibration measurement had to be done in stages with suitable optical filters applied 

to remove the contribution from second order effects.  The results from each stage 

are represented by each of the curves.  The sharp drop-off at 1100 nm was due to 

the long wavelength cutoff of the photodiode due to bandgap of silicon (1.12 eV at 

300 K).  It can be seen that intensity of the output of the monochromator varies with 

wavelength.  It has peak intensity at approximately 1000 nm for a lamp current of 7 

A.  It is particularly weak in the near-UV and violet-blue regions of 200 nm to 400 nm.  
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This characteristic posed some challenges for the responsivity measurements for 

the camera.  Due to the low light intensity at this region, the exposure time for the 

camera had to be set at 25 ms and Gray Mean Value adjustments made to the 

camera to capture more light.  This caused over-saturation of the image sensor for 

the green and red signals beyond 400 nm.  The Gray Mean Value function available 

in the HCCT software was used to reduce the red and green signals and boost the 

blue response.  Multiple measurements were taken with different camera settings, 

as summarized in Table 3, to plot the camera response curve.   
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Figure 15. Calibrated Intensity of the Monochromator output vs Wavelength. 

 

As mentioned, the measurements were taken with the monochromatic light 

spread over the calibrated detector, and a second setting with light focused on the 

detector.  Similar settings were also used during the characterization of the camera.    

As the near-IR photons are captured in the red layer, the resultant image is 

artificially colored by the camera image processor to display it in a reddish color.  For 
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the second case with focused light, the entire area of the image was analysed as the 

signals were not oversaturated even with the Gray Mean Value adjustment.  

 

 
Figure 16. Image of 1000 nm wavelength monochromatic light.  Since most of the signal at 

this wavelength comes from the bottom sensor, the software assigns it red color. 
 

Numerous measurements were taken with camera in various configurations.  

This was to study the effects each setting had on the results as well as to select the 

most suitable result for analysis.  It was important that the captured images were not 

over-compensated by the camera’s internal image processor, yet had a sufficient 

range of signal response.  The most suitable experimental set-up was with the 

monochromator light source current set at 7 A for light spread over the detector and 

at 8.33 A for light focused.  The camera exposure setting was at 25 ms and the 

monochromator slit widths at 0.5 mm.   Figure 17 shows the estimated FOVEON 

responsivity in the visible region (with the camera filter in place).  The response 

curves are similar to that generated by FOVEON  [12].  The undulating profiles of the 

curves are due to the insufficient dynamic range of the camera.  The 8-bit digital 

output for each color was not sufficient to provide the required signal resolution 

needed to plot smoother curves.  The lock-in amplifiers had an analog measurement 

range from less than 3 mV to more than 3 V which is equivalent to a 10-bit digital 
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output.  However, the HVDUO-5M camera could only produce 8-bit digital outputs.  

Although the MIL-Lite analysis software could extract up to 16-bit digital output, it 

was not practical since the limiting factor of the camera’s 8-bit/channel analogue-to-

digital converter.  The program would artificially pad the digital output from the 

camera even if output settings were changed to higher resolution.  This would make 

the results unrealistic and unusable for analysis.   
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Figure 17. The measured FOVEON responsivity for visible light filtered by the built-in 
camera filter.   

 

Figure 18 shows the responsivity curves from 600 nm to 1100 nm for light 

spread over the detector.  The curves show two stages of measurement, from 400 

nm to 600 nm, and from 600 nm to 1100 nm.  The overlap in the responsivity curves 

for different regions indicates the repeatability in the measurements.  The red 

responsivity above 700 nm demonstrated the FOVEON image sensor’s ability to 

detect near-IR wavelengths.  As shown in Figure 16, invisible monochromatic light at 

1000 nm wavelength could be imaged.   
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Estimated FOVEON Responsivity (without Camera Filter)
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Figure 18. Measured responsivity from 400 nm to 1100 nm showing the signal response in 

the near-IR wavelengths. 

 
The responsivity curves in the near-UV to blue wavelengths are shown in 

Figure 19.  Although the light was focused on the camera, it was still not bright 

enough at these wavelengths to provide a sufficiently large signal.  To improve the 

response in the blue signal while suppressing the red and green signals, the Gray 

Mean Value setting of the camera was adjusted to 250, 250, 20, in the order of red, 

green and blue input.  The Gray Mean Value function was a white balance function 

allowing the manual adjustment of the color coefficients in the camera.  Under 

different lighting, the same colors will appear differently due the reflectance of the 

object being imaged.  This is also known as metamerism, which will be elaborated in 

Chapter IV.  With suitable input values, the camera can compensate for this effect 

and produce images with colors that match better to the actual scene.  By setting 

higher levels of a particular primary color and lower input values of another, the 

camera automatically reduces the signal of output of the color with higher input and 

increases the color with a lower input value.  For example, in the experiments, 250, 

250, 20 were chosen as a suitable input for the red, green and blue signals 

respectively.  The camera then reduced the red and green signals while boosting the 
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blue output.  For the near-UV imaging, this worked to increase the very weak blue 

response and reduce the red and green signals largely caused by noise in the 

system.  Near-UV signals captured in the blue layer were amplified in this manner to 

produce the image shown in Figure 20.  
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Figure 19. Measured blue responsivity with 250, 250, 20 Gray Mean Value setting enabled.  
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Figure 20. Imaged captured for near-UV light at 200 nm with Gray Mean Value of 250, 250, 
20 camera setting.  The blue color indicates the detection of near-UV by the “blue” detector. 

 

The relationship between the Gray Mean Value adjustments and the blue 

output signal was studied for the 250, 250, x setting used in the experiment.  The red 

and green inputs were fixed to a value of 250 each while the blue input was 

increased from a value of 1 to 250.  Preliminary results have shown to be non-linear 

as shown in Figure 21.  More experiments are necessary to provide conclusive 

results, which are beyond the scope of this report.  Hence, due to this uncertainty, 

the near-UV curves were not normalized and plotted with the curves for the visible 

and near-IR measurements.  Nevertheless, the results showed that the Gray Mean 

Value function could be used as a software gain to image low intensity light at 

wavelengths below 400 nm. 
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Figure 21. The relationship between the Gray Mean Value input at 250, 250, x setting and 
the blue output signal.  
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III. MULTISPECTRAL IMAGING WITH THE FOVEON 
IMAGE SENSOR 

 
A. GENERAL 

Traditional color imaging systems employ photodetector arrays arranged in 

the Bayer pattern capture images with dedicated blue, green and red detectors.  

Other sensors such as the Triple Charged Coupled Devices (CCD) systems split the 

incoming light into the three primary colors before recombination.  As illustrated in 

Figure 4, the FOVEON image sensor is captures images with the same triple-well 

detector at every pixel location without the need for image interpolation and complex 

device assembly.  However, to produce visible images that are illuminated by non-

visible light requires image post-processing.    This chapter discusses the theoretical 

background behind color perception and digital imaging in the HanVision camera as 

well as some of the outdoor images captured in the near-UV and near-IR 

wavelengths.  

 

B. NEAR-UV AND NEAR-IR IMAGING 
1. Color Perception and Digital Imaging  
There are two main image receptors in the human eye.  The rod light sensors 

are extremely sensitive to changes in light levels and are therefore responsible for 

detecting motion, our peripheral vision and for our ability to see in the dark.  They 

are however, not sensitive to color.  The cone sensors on the other hand are 

sensitive to color and are responsible for our visual acuity.  From Kalloniatis and 

Luu’s  [13] website, there are three types of cones in our eyes and they detect in the 

blue (S-cone), green (M-cone) and red (L-cone) wavelengths.  They have a range of 

spectral sensitivities and are represented by tristimulus (or color matching) functions 

as shown in Figure 22.  As presented in Gilblom, Yoo and Ventura’s paper on color 

imaging  [4], the goal of imaging systems is to produce images that match these 

tristimulus curves as closely as possible.  This will produce images that are 

perceived to be most accurately matched to the actual image scene.  The FOVEON 

image sensor and other conventional photodetector arrays employ this concept to 
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produce images in these three colors, in order for the human nervous system to 

recognize them.   

 

 

Figure 22. “Spectral sensitivity of the S-cone, M-cone and L-cone.  Combined results from 
various authors using different methods including retinal densitometry from Rushton (green), 
microspectrometry from Brown and Wald (red) and increment threshold producing artificial 
monochromasy from Brinley (black) and increment threshold measurements from Wald (X 

blue) (From Moses, R. S. and Hart, W. M (Ed) Adler’s Physiology of the Eye, Clinical 
Application, St. Louis; The C. V. Mosby Company, 1987)” Extracted from Kalloniatis & Luu  [13]. 

 

The FOVEON image sensor is a CMOS chip.  As shown in Figure 23, 

photons captured by individual photodetector pixels are converted into voltage 

signals at the pixel location, unlike CCD detectors  [14].  This reduces the data 

processing requirements within the camera itself.  Voltage levels at every pixel in all 

three layers may also be captured for data processing.  As shown in Figure 24, each 

layer in the FOVEON image sensor captures a specific band of wavelengths.  

However, longer wavelengths that pass through the upper layers generates signals 

not only in the intended layer but its upper layers as well.  This produces voltage 

readouts in multiple layers when longer wavelengths are captured.  According to the 

study by Gilblom et al.  0 [4], although blue and green responses are produced even 

when red or near-IR wavelengths are captured, the signals are minimal due to the 

relatively thin absorption regions in these upper layers.  
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Figure 23. Image Processing within a CMOS Sensor  [14]. 
 

 

Figure 24. Schematic of FOVEON camera pixel and Absorption Mechanism for the various 
Wavelengths. 

 

The actual color of the object is obtained by the addition of the three primary 
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codes and sent to the PC to be displayed as color images.  To adjust the image 

color for various lighting conditions, various color settings programmed into the 

camera.  These color settings adjust the blue, green and red responses of the image 

sensor to produce colors that match the image scene as closely as possible.  For 

special applications such as this work, the response settings for all three layers are 

set to unity and the Gray Mean Value function may be used to manually adjust the 

white balance of the image.  Figure 25 show the block diagram of a HVDUO-10M 

camera which is almost similar to the HVDUO-5M model used for this thesis.  The 

specifications for both cameras are the same with the exception of lesser dynamic 

range and a physically smaller detector array installed in the latter model.   

 

 

Figure 25. HVDUO-10M Camera Block Diagram (Similar to the HVDUO-5M Camera used 
for this Thesis)  [12]. 

 

2. Outdoor Imaging 

Numerous outdoor scenes were captured with the HVDUO-5M camera for 

analysis.  The camera set-up consisted of the HVDUO-5M connected to the PC.  

Images of downtown Monterey and Pacific Grove (Figure 26), approximately 2 km 

away, were captured from the roof of Spanagel Hall in the Naval Postgraduate 

School.  Other image scenes include the Monterey Bay and passing aircraft arriving 

and leaving the Monterey Peninsular Airport.  An optical filter rack was placed in 

front of the camera to mount the various filters used in the experiment.  The four 

optical filters used in the experiment were the HOYA U325C, U360, L38 and IR85 
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filters.  The U325C is a UV transmission filter and allows the transmission of 

wavelengths from approximately 240 nm to 400 nm.  It also allows some 

transmission in the near-IR region from 690 nm to 1100 nm, although this has 

marginal effect on the captured image.  The U360 filter is a narrowband blue pass 

filter with range from 320 nm to 400 nm.  The L38 is a sharp-cut filter allowing the 

transmission of visible and IR light from 370 nm to 2800 nm.  Finally, the IR85 filter 

allows the transmission of IR light from 850 nm to 2800 nm.  Their respective 

transmission curves were obtained from the HOYA filters company website [ref 

http://www.hoyafilters.com] and are reproduced in Appendix II of this report. 

 

The effects of various optical filters on the images can be seen in the 

following sections of this report.  The camera was set to “unit” color setting, hence 

no color compensation was applied to the images.  The camera’s own filter (400 nm 

to 660 nm) was removed when the HOYA filters were affixed.  As the FOVEON 

image sensor is able to detect all three colors on a single pixel, the camera is able to 

have higher image resolution despite having relatively lesser number of pixels (only 

1.5 megapixels physically).   As shown in Figure 26, the camera is able to capture 

the image of a car from 2 km away.  This achieved by sharpening the image with the 

NEGUS image analysis software. 

 

 
  

Figure 26. Image of downtown Monterey captured with the camera filter (400 nm to 660 
nm) affixed.  The zoomed-in image of a car is shown. 
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Due to the unique triple-layered design of the FOVEON detector, it is able to 

capture near-UV and near-IR photons in the blue and red layers, respectively.  A 

schematic of this concept is shown in Figure 24.  This process results in the artificial 

coloring of light in the near-UV and NIR wavelengths.  Near-UV light captured by the 

camera contributes to the blue signal and appears blue when UV transmitting filters 

are used.  Likewise, near-IR light appears as red as they are captured by in the red 

layer.  In addition, as the long wavelength photons pass through the detector layers 

to be captured in the red layer, they also produce some signals in the layers above it 

as well.   This is clearly illustrated by the spectral response curves of the camera as 

shown in Figure 27.  These overlapping curves show that the blue and green 

detection layers show significant response even when wavelengths longer than 550 

nm is imaged.   
 

 

Figure 27. Spectral Response of the FOVEON camera.  Each curve represents the 
response curve of each layer according to its color  [12]. 

 

The effects of atmospheric absorption as well as the various material 

reflectances are important in the analysis of the images.  Figure 28 shows the 

absorption characteristics of various molecules in the environment  [15].  The white 

bands indicate the absorption windows of the respective molecules.  Near-UV and 

violet light is absorbed mainly by ozone, nitrogen oxide and atmospheric impurities 

such as sulfur dioxide.  However, near-IR and red wavelengths are strongly 
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absorbed by water molecules.  In Figure 29, the spectral reflectance of various 

materials was compared  [16].  From the graph it can be seen that the man-made 

construction materials, such as roofing and structural materials, show almost 

constant reflectance from the near-UV to the near-IR spectrum.  The spectral 

reflectance for the vegetation show strong reflectance in the near-IR wavelengths 

but lesser reflectance in the near-UV wavelengths, compared to the building 

materials.  These contrasts in reflectance and the effects of molecular absorption 

allow the discrimination of near-UV and near-IR wavelengths that are captured by 

the camera.  With the UV filter affixed, bright blue colors will indicate a strong UV 

reflectance whilst faint blue colors will show a strong absorption in UV in that object.  

Similarly, with the IR filter affixed, bright red colors will indicate strong IR reflectance 

whilst faint red colors will indicate a very low emission of IR signal.    

 

 

Figure 28. The contribution of the various molecules to atmospheric absorption  [15]. 
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Figure 29. Comparison of the Spectral Reflectance of various Construction Materials and 
Vegetation  [16]. 

 

2. Imaging near-UV and near-IR wavelengths 
To image in near-UV with the FOVEON camera, it was necessary to affix the 

U325C filter and to increase the blue response of the camera by adjusting the Gray 

Mean Value to 250, 250, 20.  From the top image in Figure 30, it can be seen that 

for the same scene as Figure 26, the clouds are more defined and the reflection of 

UV light from the buildings is contrasted with the surrounding UV absorbing foliage.  

The reddish tint of the buildings and trees are effects of IR light captured by the 

camera due to the IR transmitting window of the U325C filter.  The blue channel of 

the same scene is shown below it.  In Figure 31, the image captured with the U360 

filter show very little spectral information.  Compared to the U325C image, the 

reddish tint in the trees is greatly reduced due to the cut-off in IR transmission.  The 
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contrasts in the clouds, buildings and trees have also been reduced due to the cut-

off in near-UV transmission. 

 
 

 

Figure 30. Image of downtown Monterey captured with U325C filter (240 nm to 400 nm) 
(top) and the same scene in its blue channel (bottom). 

 

 

Figure 31. Image of downtown Monterey captured with U360 filter (320 nm to 400 nm). 
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With the sun shining from behind the camera, images of Monterey Bay were 

captured with the U325C and U360 filters.  From Figure 32, high near-UV reflection 

off the surface of the sea can be contrasted with the low near-UV reflection from the 

buildings and the trees.  In addition, sailing boats can be easily distinguished against 

the color of the sea. 

 

 

Figure 32. Image of Monterey Bay captured with U325C filter (240 nm to 400 nm). 
 

Near-IR wavelengths were captured with the L38 and IR85 filters.  From 

Figure 33, the L38 filter allows the transmission of both visible and near-IR 

wavelengths.  There is noticeable absence in the blue signal but high IR reflectance 

from the trees and the houses is clearly visible.  From Figure 34, the high contrast 

between the clouds and the sky can be seen clearly with the IR85 filter.   However, 

compared to the previous figure, there is not much contrast between the houses and 

the trees due to similar near-IR reflectance from these objects.   
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Figure 33. Image of downtown Monterey captured with L38 filter (370 nm to 2800 nm). 
 

 

Figure 34.  Image of downtown Monterey captured with IR85 filter (850 nm to 2800 nm). 
 

Similarly, images of Monterey Bay were also taken with the L38 and IR85 

filters.  As shown by the image on the left of Figure 35, the IR light can be clearly 

distinguished from the clouds, as well as from the reflection off the buildings and 

trees.  Similar to the previous figure, there is very little contrast between the 

buildings and trees.  However, the lack of IR reflection off the surface of the sea 

shows the IR absorption characteristic of sea water.  The red channel of the same 

scene is shown on the right. 
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Figure 35. Image of Monterey Bay captured with IR85 filter (850 nm to 2800 nm) (left) and 
the same scene showing its red channel (right). 

 

Other images including passing aircraft were also imaged with the camera.  

From Figure 36, the outline of the aircraft as well as the IR reflection off its body can 

be clearly seen.  It was found that the aircraft was difficult to locate in visible light, 

without the IR filter, even on a clear day.  At the same distance from the observer, 

the aircraft is not well contrasted against the surrounding sky in a visible image.  

With the IR filter applied, the glare from the sky is greatly reduced providing high 

contrast between the aircraft and its surroundings.  Due to the high resolution of the 

camera, it is also able to capture very fine image details even in a monochrome 

color such as red.   

 

  

Figure 36. The rear of a passing jet captured with the IR85 filter (850 nm to 2800 nm). 
 

In Figure 37, a camouflage uniform was set up in the midst of some 

vegetation.  With the camera’s visible filter (400 nm to 660 nm) on, the scenery looks 

green and there is not much contrast between the uniform and its surroundings.  
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Hence even in the day, the shape of the uniform is not easily detected.  With the 

camera filter removed and the UV325C filter on, the image is illuminated more with 

the sun’s UV light and the silhouette of the uniform appears more clearly than the 

first picture (circled).  Figure 38 shows the same scene in its respective red, green 

and blue channels.  Notice that the blue channel gives the best contrast, allowing the 

uniform to be identified easily. 

 

 

Figure 37. Set-up of a camouflage uniform (circled) in the midst of vegetation showing the 
image captured in visible light (left) and the UV image (right). 

 

     
Figure 38. The UV image of the camouflage uniform set-up presented in its respective red 
(left), green (center) and blue (left) channels.  Notice the best contrast is in the blue channel. 
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IV. DISCUSSION AND RECOMMENDATIONS 
 

A. NEAR-UV AND NEAR-IR IMAGING 

 From the discussions and the figures presented in the previous chapter, there 

are many advantages of the FOVEON camera.  Due to its spectral responsivity in 

the near-UV and near IR wavelengths, it can be easily configured for imaging in 

these wavelengths using external filters.  The detection of UV and IR wavelengths in 

the blue and red layers of the image sensor allows these wavelengths to be 

artificially colored.  Color coefficients may translate these wavelengths into 

representative colors, other than red or blue.  In addition, the brightness or contrast 

of the image captured in visible light may be enhanced by the presence of near-UV 

or near-IR illumination.  One of the limitations of employing near-UV and near-IR 

imaging is in the atmospheric attenuation effects.  As shown in Figure 28, molecules 

and impurities present in the environment may scatter or absorb bands of near-UV 

and near-IR light.  Such interactions reduce the intensity of these wavelengths and 

limit the effective range of operations.  Spectral reflectances of various materials 

also play a role in contrasting the objects imaged in these wavelengths.  However, 

these features can be used for identification of various objects if the spectral 

information can be extracted.  

 

 Presently, there are many applications that involve the use of near-UV and 

near-IR wavelengths for imaging.  These include defense related applications such 

as missile seekers designed with solar-blind capabilities.  Due to the different 

reflectance of near-UV light, animal conservationists have also employed near-UV 

imaging to spot endangered polar bears in the arctic environment that is practically 

uniform in contrast and color.  Forestry departments also employ the use of near-IR 

imaging to monitor forest fires and de-forestation.  The success of these civilian 

applications may lead to equally successful applications for the military especially in 

the areas of intelligence operations.  With the appropriate optical filters and data 

processing software, the use of the triple-well image sensor for such purposes may 
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improve performance.  The following section discusses some of these potential 

applications. 

 

B. FURTHER DEVELOPMENT AND POSSIBILE APPLICATIONS 

1. Further Development Possibilities in the Design of Triple-Well 
Image Sensors 

While the FOVEON detector has surpassed conventional digital imaging 

sensors in performance and has shown that triple-well photodetection may be the 

next standard in digital imaging, there are a number of potential areas for research.  

With the advances in material engineering and the better understanding of the 

human color perception, it is possible to push the boundaries of triple-well 

photodetector technology even further.  In the area of material research, other 

intrinsic or extrinsic materials may be developed with similar or a greater range of 

absorption depths.   Materials with a greater range of absorption depths may even 

allow the development of multi-layered photodetectors that are able to capture not 

just three but more wavelengths including the near-UV and near-IR wavelengths.  

This development is possible with the growing advancement in semi-conductor 

manufacturing processes.  Similarly, as there are still a number of inconsistencies 

with the theory of trichromatic vision and its opposing theories  [17], it may be 

worthwhile to develop photodetectors with spectral sensitivities in more wavelength 

parameters than just the tristimulus curves.  An achromatic detector that detects 

black and white will definitely compliment the imaging performance of the present 

FOVEON technology very well.   

 

Present studies have proven that the FOVEON detector is able to perform 

basic imaging in the near-UV and near-IR wavelengths.  However, more work is 

required in the image post-processing stage to convert data captured in these 

wavelengths into useful and intuitive information for the human operator.  In addition, 

the resolution of the triple-well photodetector needs to be explored both for remote 

sensing applications as well as microscopy.  In a bid to provide higher resolution 

imaging capabilities, there has been much study into the effects of sensor shape and 

the arrangement of the various individual detectors.  The article by Qi and Synder 
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 [18] quotes that the hexagonal grid pattern requires 13.4% less sampling points to 

obtain the same high frequency information, and is more efficient than the 

rectangular grid arrangement currently adopted for the FOVEON image sensor as 

well as other image sensors arranged in the Bayer Pattern.  The same article also 

states that hexagonal array patterns can model the human visual system more 

precisely since the cones in the retina are also hexagonal in shape.  As the center to 

center distances between each pixel in the hexagonal array structure are the same, 

it eliminates the connectivity ambiguity of rectangular grid patterns.  In 2000, Fujiflm 

announced its newest development, the octagonal pixel arrangement pattern, 

marketed under the trade name “Super CCD”  [19].  The company claims that this 

design, together with its 45-degree alignment system increases sensitivity, improves 

signal-to-noise ratio and offers a much wider dynamic range. 

 

 

Figure 39. The center to center distances between pixels are constant in a hexagonal 
arrangement but not in a rectangular pattern  [19]. 

 

2. Automated Multi-spectral Imaging and Other Applications 
As shown from the experiments performed with the FOVEON camera in a 

combination of both visible and near-UV or near-IR wavelengths, the image obtained 

has greater brightness and demonstrates higher pixel resolution.  In addition, images 

taken in invisible light reveal other properties of the image scene that may not be 

perceived by the human eye, such as IR light from hot bodies.  From the report by 

Gilblom et al.  [7], it can also be seen the strong UV absorption by certain objects, 

such as leaves, allow the distinction between natural and man-made items.  Hence, 

sensor systems designed with logic algorithms to recognize signals from these 

invisible wavelengths may enhance multispectral imaging operations.  Other image 

processing applications include sharpening the captured image in order to 
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distinguish the finer details before processing the image with edge detection 

algorithms to provide higher contrast between the subject and the surrounding 

features.  Present multi-spectral imaging techniques also include fusing images 

captured in different wavelengths together.  Some of the potential military 

applications include the detection of armored vehicles in foliage as well as other 

counter-camouflage applications.  Compared to a Foliage Penetration Radar, a 

CMOS chip that is able to perform multi-spectral imaging has much potential in man-

portable target designation and surveillance operations.   

 

Other areas of potential development for the FOVEON image sensor include 

improvement in the responsivity especially for near-UV light as well as near-IR 

imaging for night vision applications.   
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V. CONCLUSION 
 

 While the aim of the thesis was achieved, there were a number of limitations 

in the thesis research that may be improved for future studies.  Due to the time 

available and the scope of this thesis, it was not able to integrate the camera to 

other image analysis applications and image capture devices such as laptop 

framegrabber cards.  With the camera operating with laptops, more outdoor 

sceneries and applications may be explored.   In the course of characterizing the 

camera, it was also found that the dynamic range of the HVDUO-5M was insufficient 

to provide higher resolution results.  The FOVEON image sensor outputs digital 

signals instead of analog signals due to its CMOS design.  For subsequent studies, 

the use of cameras with larger dynamic range, preferably 10-bits or more per color, 

would be able to provide better results.  As the internal color compensation 

coefficients of the camera were not know, it was not possible to correlate the effects 

of the gain settings with the output response in the three colors.   

 

Despite these limitations, this thesis has been successful in conducting a 

preliminary study in the characteristics and the performance of the FOVEON image 

sensor.  In the course of the research, the Photodetector Characterization System 

was calibrated and the responsivity of the FOVEON image sensor was measured 

from 200 nm to 1200 nm.  Near-IR and near-UV images were also captured with the 

aid of various optical filters for image analysis.  These images were found to be of 

high resolution and capable of distinguishing man-made objects from surrounding 

vegetation when imaged with invisible light.  Through the course of the research, a 

number of topics were explored including the physics behind digital imaging devices 

as well as the human perception of color.  The advantages of the image sensor and 

areas with potential for further development and applications were also discussed. 

 

 There is much potential for triple-well photodetectors as digital imaging 

devices in the military.  Its high spatial and color resolution allows them to be very 

suitable for intelligence gathering and surveillance applications.  The ability to image 
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near-UV and near-IR wavelengths gives an added edge in the area of multi-spectral 

imaging.  Due to its CMOS construction, it is small in size and cheaper to mass 

produce than CCDs.  This is advantageous in man-portability and large-scale 

equipping considerations.  These are just some of the worthy considerations in favor 

of triple-well photodetectors replacing conventional photodetectors in both civilian 

and military applications.    
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APPENDIX I – UV-035D (S/NO. 7309) CALIBRATION CHART  
 

The following is the calibration chart of the UV-035D UV enhanced 

photodiode used in the calibration of the Oriel Monochromator. 

 

Wavelength 
Responsivity 
(A/W) Wavelength 

Responsivity 
(A/W) Wavelength 

Responsivity 
(A/W) 

200 0.07 500 0.242 800 0.418
210 0.078 510 0.25 810 0.423
220 0.084 520 0.256 820 0.429
230 0.09 530 0.262 830 0.435
240 0.094 540 0.268 840 0.44
250 0.089 550 0.275 850 0.445
260 0.082 560 0.281 860 0.45
270 0.076 570 0.288 870 0.455
280 0.078 580 0.294 880 0.46
290 0.087 590 0.3 890 0.464
300 0.099 600 0.305 900 0.472
310 0.106 610 0.31 910 0.477
320 0.11 620 0.315 920 0.481
330 0.113 630 0.322 930 0.486
340 0.115 640 0.329 940 0.491
350 0.101 650 0.334 950 0.494
360 0.102 660 0.34 960 0.499
370 0.104 670 0.346 970 0.499
380 0.114 680 0.351 980 0.501
390 0.131 690 0.357 990 0.496
400 0.147 700 0.361 1000 0.487
410 0.161 710 0.367 1010 0.472
420 0.174 720 0.373 1020 0.447
430 0.185 730 0.379 1030 0.413
440 0.194 740 0.384 1040 0.369
450 0.204 750 0.39 1050 0.318
460 0.212 760 0.396 1060 0.262
470 0.221 770 0.402 1070 0.216
480 0.229 780 0.407 1080 0.18
490 0.236 790 0.412 1090 0.149

  1100 0.121

Table 4. Responsivity Values of Calibrated UV-035D Photodiode (S/N 7309).
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Silicon Photodiode Model UV-035D S/N 7309 Calibration Chart
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Figure 40. Calibrated Responsivity Chart of the UV-035D Photodiode (S/N 7309). 
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APPENDIX II – TRANSMISSION CURVES OF HOYA 
FILTERS  

 

The following are the transmission curves of the HOYA filters used in the 

research.  They are all reproduced from the HOYA filters website available on the 

world wide web at www.hoyafilters.com. 

 

 

Figure 41. Transmission curve of HOYA U325C filter. 
 

 

Figure 42. Transmission curve of HOYA U360 filter. 
 

 

Figure 43. Transmission curve of HOYA L38 filter. 
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Figure 44. Transmission curve of HOYA IR85 filter. 



 57

LIST OF REFERENCES 
 

[1] FOVEON Inc. (2004) FOVEON - Why X3 is Better; available from World Wide 

Web @http://www.foveon.com/X3_better.html, cited Jul 2004. 

 

[2] Rogers, A. (1997) Essentials of Optoelectronics with Applications, London: 

Chapman and Hall. 

 

[3] Merrill, R. B. Color Separation in an Active Pixel Cell Imaging Array Using a 

Triple-Well Structure, United States Patent No. 5965875, Oct 12 1999. 

 

[4] Gilblom, D. L., Yoo, S.K. & Ventura, P. (2003) Operation and Performance of 

a Color Image Sensor with Layered Photodiodes, SPIE, Vol. 5074; available from 

World Wide Wed @http://www.alt-vision.com/documents/5074-35.pdf, cited Aug 

2004. 

 

[5] Tomkins, M. R. FOVEON: New CMOS sensor captures triple the data 

(2002);available from World Wide Web @http://www.imaging-

resource.com/EVENTS/PMAS02/1013470528.html, cited Nov 2004. 

 

[6] Hynes, S. The X Factor, Professional Photographer Feb 2003 Pg 59-63; 

available from World Wide Web 

@www.totaldp.com/articles_download.cfm?action=download_ 

sample&id=54&site=PP&sh=1&mh=50, cited Nov 2004. 

 

[7] Gilblom, D. L. & Yoo, S. K. (2004) Infrared and Ultraviolet Imaging with a 

CMOS Sensor having Layered Photodiodes, SPIE/ISA Electronic Imaging 2004; 

available from World Wide Web @http://www.alt-vision.com/documents/5301A-

25.pdf, cited Aug 2004. 

 



 58

[8] HanVision Co. Ltd. HVDUO-5M Digital Camera with FOVEON X3 Direct Color 

Image Sensor, Product Brochure; available from World Wide Web @http://www. 

hanvision.com/index.html?PFiPack_Session=fc7a016623208a47d15997d5cdd5b36

1, cited Sep 2004. 

 

[9] Herdlick, B. E. (2002) Computer-Controlled Photodetector Characterization 

System (Design and Construction), Naval Postgraduate School MSc Thesis, Dec 

2002. 

 

[10] UDT Sensors Inc. UV Enhanced Series – Inversion Layers and Planar 

Diffused Silicon Photodiodes, Product Brochure; available from World Wide Web 

@http://www.udt.com/Datasheets/Products/UVEnhancedSeries.pdf, cited Jul 2004.  

 

[11] HanVision Co. Ltd (2004) HCCT User Guide. 

 

[12] Gilblom, D. L., Yoo, S. K. & Ventura, P. (2003) Real-time Color Imaging with a 

CMOS Sensor having Stacked Photodiodes, SPIE Annual Meeting 2003; available 

from World Wide Web @http://www.alt-vision.com/documents/5210-14.PDF, cited 

Aug 2004. 

 

[13] Kalloniatis, M. & Luu, C. Psycho Physics of Vision; available from World Wide 

Web @http://webvision.med.utah.edu/KallColor.html#overview, cited Oct 2004. 

 

[14] Technical Advisory Service for Images (TASI) (2003) Advice Paper – Digital 

Cameras; available from World Wide Web @http://www.tasi.ac.uk/advice/creating/ 

pdf/camera.pdf, cited Oct 2004. 

 

[15] ESA (2004) Atmospheric Absorption; available from World Wide Web 

@http://envisat.esa.int/support-docs/atmospheric-absorption/atmospheric-

absorption.html, cited Nov 2004. 

 



 59

[16] NASA Jet Propulsion Laboratory (2002) ASTER Spectral Library; available 

from World Wide Web @http://speclib.jpl.nasa.gov, cited Nov 2004. 

 

[17] Encyclopædia Britannica (2004) Colour . Encyclopædia Britannica Premium 

Service; available from World Wide Web @ 

http://www.britannica.com/eb/article?tocId=21866, cited Oct 2004.  

 

[18] Qi, H. & Snyder, W. E. (2004) Infrared Imaging Learns from Camera Industry, 

Laser Focus World, July 2004. 

 

[19] Fujifilm (2004) News Highlights – New 4th Generation Super CCD Producing 

higher resolution and wider dynamic range by sophisticated miniaturization 

technologies, Fujifilm website; available from World Wide Web @ 

http://home.fujifilm.com/news/n030122.html, cited Oct 2004. 

 

[20] Technical Advisory Service for Images (TASI) (2004) Advice Paper – Colour 

Theory: Understanding and Modelling Colour; available from World Wide Web 

@http://www.tasi.ac.uk/advice/creating/pdf/colour.pdf, cited Oct 2004. 

 

[21] Nave, R. (2000) Color Perception, Hyperphysics website, Georgia State 

University; available from World Wide Web @http://hyperphysics.phy-

astr.gsu.edu/hbase/vision/colper.html#c1, cited Oct 2004. 

 

[22] Poynton, C. (1997) Frequently Asked Questions about Color; available from 

World Wide Web @ http://www.poynton.com/PDFs/ColorFAQ.pdf, cited Oct 2004. 

 

[23] Technical Advisory Service for Images (TASI) (2004) Advice Paper – Colour 

Management in Practice; available from World Wide Web 

@http://www.tasi.ac.uk/advice/creating/pdf/colour2.pdf, cited Oct 2004. 

 



 60

[24] Scott, E. & Bewley, H. (1997) Color Vision – Human Perception of Different 

Wavelengths of Light; available from World Wide Web @http://www.photo.net/photo/ 

edscott/vis00010.htm, cited Oct 2004. 

 

[25] HunterLab (1997) Application Notes – Metamerism Index; available from 

World Wide Web @http://www.hunterlab.com/appnotes/an03_97.pdf, cited Oct 2004. 

 

[26] HunterLab (2000) Application Notes – Color Inconsistency; available from 

World Wide Web @http://www.hunterlab.com/appnotes/an11_00.pdf, cited Oct 2004. 

 

[27] H Cho Ed. (2003) Opto-Mechatronic Systems Handbook – Techniques and 

Applications, CRC Press.  

 

[28] Matrox Electronic Systems Ltd. (2000) Matrox Intellicam ver 2.07- User Guide. 

 

[29] Lyon, R. F. & Hubel, P. M. Eyeing the Camera: Into the Next Century, 

IS&T/SID Tenth Color Imaging Conference; available from World Wide Web 

@http://www.foveon.com/docs/Century.pdf, cited Aug 2004. 

 



 61

INITIAL DISTRIBUTION LIST 
 
 
1. Defense Technical Information Center 

Fort Belvoir, Virginia  
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, CA 
 
3. Professor Gamani Karunsiri 
 Naval Postgraduate School 
 Monterey, CA 
 
4. Professor Richard Christopher Olsen 
 Naval Postgraduate School 
 Monterey, CA 
 
5. Professor James Luscombe 
 Naval Postgraduate School 
 Monterey, CA 
 
 
 


